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24 Immunological Approaches to the 
Treatment of Lung Cancer

INTRODUCTION �

Evidence of an endogenous immune-modulating effect in 
non–small cell lung cancer (NSCLC) is suggested based on 
heterogeneity of clinical progression observed in patients 
with the same histologic type of malignancy (1,2). There 
is also evidence for shared antigens in lung cancers (3–10) 
as seen in other tumor types (11,12). Dendritic cells (DCs), 
responsible for antigen presentation and induction of anti-
tumor immunity in tumor-bearing hosts (13,14), have 
been shown to be activated in NSCLC, and biopsies of 
responsive disease have occasionally demonstrated tumor-
infiltrating lymphocytes within the cancer, suggestive of 
endogenous immune effect (15). Lastly, improved survival 
of lung cancer patients who develop empyema has been 
rarely observed (16), further suggesting a potential positive 
role of the modulated host immune system against cancer.

Recent advances in molecular biology have identified 
antigens, cytokines, and mechanisms that have furthered 
our understanding of immunotherapeutic approaches.

The role of DCs in cell-mediated immunity has been 
extensively investigated (17–21). DCs play a central role 
in the induction of antitumor immunity through tumor 
antigen cross-presentation and the efficient display of 
these antigens in the context of major histocompatability 
complexes (MHC). This ultimately results in stimulation, 
proliferation, and activation of CD4+ and CD8+ T cells. 
CD4+ cells further augment the activity of natural killer 
(NK) cells and macrophages, in addition to amplifying 
antigen-specific immunity by local secretion of cytokines 
(22–26). These attributes make DCs a pivotal component 
in therapeutic strategies of many current immune-based 
therapies in NSCLC.

However, previous approaches to immunotherapy 
in lung cancer have failed to realize the potential of this 
promising strategy. There are several hypotheses to explain 

potential lack of activity, including ineffective priming 
of tumor-specific T cells, lack of high avidity of primed 
tumor-specific T cells, and physical or functional disabling 
of primed tumor-specific T cells by the primary host, and/
or tumor-related mechanism. For example, in NSCLC a 
high proportion of the tumor-infiltrating lymphocytes are 
immunosuppressive T regulatory cells (CD4+ CD25+) that 
secrete transforming growth factor-β (TFG-β) and express 
a high level of cytotoxic T-lymphocyte (CTL) antigen-4 
(27,28). These cells have been shown to impede immune 
activation by facilitating T-cell tolerance to tumor-asso-
ciated antigens (TAAs) rather than cross- priming CD8+ 
T cells, resulting in the nonproliferation of killer T cells 
that recognize the tumor (27–33). Additionally, elevated 
levels of interleukin-10 (IL-10) and TFG-β found in 
patients with NSCLC have been shown in animal models 
to mediate immunosuppression, which may in turn alter 
host defense against malignant cells (34–43). These mech-
anisms are manipulated in different ways in the design of 
recent vaccine therapeutics described in this review.

NSCLC VACCINE DEVELOPMENT �

Belagenpumatucel

Belagenpumatucel-L (Lucanix) (44) is a nonviral gene-
based allogeneic vaccine that incorporates the TGF-β2 
antisense gene into a cocktail of four different NSCLC 
cell lines. Elevated levels of TGF-β2 are linked to immu-
nosuppression in cancer patients (45–50), and the level 
of TGF-β2 is inversely correlated with prognosis in 
patients with NSCLC (51). TGF-β2 has antagonistic 
effects on NK cells, lymphokine-activated killer cells, 
and DCs (34,39,40,52–54). Using an antisense gene to 
inhibit TGF-β2, several groups have demonstrated an 
inhibition of cellular TGF-β2 expression resulting in 
an increased immunogenicity of gene-modified cancer 
cells (10–14,55–58). In a recent phase II study involving 
75 early- (n = 14) and late-stage (n = 61) NSCLC patients, 
a dose-related effect of belagenpumatucel was defined 
(44). Patients were randomized to one of the three dose 
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TGF-β1 utilizing a lentivirus vector. The concentration 
of TGF-β1 decreased by 98% in the SW1 culture and 
by 94% in the Ag104 culture. To explore the efficacy 
of using these TGF-β1 inhibited tumor cultures (SW1-
TGF-β1 or Ag104-TGF-β1) as vaccines, in vivo studies 
were performed in mice. In one study, four SW1 mice 
treated with the SW1-TGF-β1 culture had a significant 
delay in tumor growth and two had a complete regres-
sion. All four of the control mice had consistent tumor 
growth. Similar results were found in studies with the 
Ag104-TGF-β1 cells (63).

GVAX

Vaccines transduced with granulocyte-macrophage colo-
ny-stimulating factor (GM-CSF) gene were potent induc-
ers of tumor immunity in animal models (64). Secretion of 
GM-CSF by genetically modified tumor cells induced local 
tumor antigen expression and stimulated cytokine release 
at the vaccine site, which activated and attracted antigen-
presenting cells, thereby inducing a tumor-specific cellular 
immune response (65). Preclinical studies conducted with 
GVAX showed no significant local and systemic toxicities 
at clinically relevant doses (64,66–68).

Several phase I/II human trials using GM-CSF–
secreting autologous or allogeneic tumor cell vaccines have 
been performed (69–74). One multicenter phase I/II trial 
involving patients with early-stage and advanced-stage 
NSCLC evaluated an autologous GVAX vaccine (8). For 
vaccine preparation, tumor tissue was obtained surgically 
or by thoracentesis in the case of malignant effusions. Cells 
were exposed overnight to an adenoviral vector superna-
tant (Ad-GM). GVAX was administered intradermally. 
A total of 43 NSCLC patients (10 early-stage, 33 late-
stage) were vaccinated. The most common vaccine-related 
adverse events were local vaccine injection-site reactions 
(93%), followed by fatigue (16%) and nausea (12%). Three 
advanced-stage patients achieved durable, complete tumor 
regression. Two remain without disease more than 5 years 
following vaccine. Both had failed prior frontline and 
second-line therapy prior to vaccination and had multisite 
disease. One complete responder showed an in vitro T-cell 
response to autologous tumor-pulsed DCs after vaccina-
tion. Survival at 1 year was 44% for all advanced-stage–
treated patients and median survival was 12 months. 
Medial survival among patients receiving vaccines secret-
ing GM-CSF at a rate of ≥40 ng/24 hours/106 cells was 
17 months, compared with 7 months for those receiving 
vaccines secreting less GM-CSF.

A subsequent trial in advanced NSCLC using a vac-
cine composed of autologous tumor cells mixed with an 
allogeneic GM-CSF–secreting cell line (K562 cells) failed 
to demonstrate evidence of clinical efficacy (75). Evidence 
of vaccine-induced immune activation was demonstrated; 
however, objective tumor responses were not seen despite 

cohorts. Grade 3 arm swelling existed in one patient with 
no other serious side effects. Of all 75 patients, the median 
survival was 441 days with a 1-year survival of 54%. In 41 
advanced-stage (IIIB, IV) patients, the investigators found 
no adverse toxicity and an impressive survival advantage 
at dose levels ≥2.5 × 107 cells/injection, with an estimated 
2-year survival of 47%. This compared favorably with 
the historical 2-year survival rate of <20% of stage IIIB/
IV NSCLC patients (3–6,59,60). Furthermore, induction 
of an enhanced immune response to tumor antigen cor-
related with a more favorable outcome. Immune function 
was explored in the 61 advanced-stage (IIIB/IV) patients. 
Cytokine production (interferon [IFN]-γ, P = 0.006; IL-6, 
P = 0.004; and IL-4, P = 0.007) was induced, an anti-
body-mediated response to vaccine human leukocyte anti-
gen (HLA) antigen was observed (P = 0.014), and there 
was a trend toward a correlation between a cell-mediated 
response and achievement of stable disease or better 
(P = 0.086).

In a recent open-label phase II trial of belagenpuma-
tucel involving 21 confirmed stage IV NSCLC patients, 
safety and efficacy as well as the correlation between cir-
culating tumor cells (CTCs) in blood and overall survival 
of advanced NSCLC patients were investigated. Patients 
were given intradermal (61) immunization of 2.5 × 107 

TGF-β2 antisense gene–transfected allogeneic tumor cells 
(belagenpumatucel) one time per month for a 16-month 
period. The trial took place from September 2005 to 
January 2008.

There were no significant grade 3 or 4 toxicities related 
to therapy. There was grade 2 transient injection-site ery-
thema in three patients and grade 1 and 2 injection-site 
induration in five patients.

Twenty of 21 patients enrolled were evaluable, with 
a median survival of 562 days; however, those patients 
whose baseline CTC levels were 0 to 1 had a significantly 
improved median survival of 660 days (P = 0.025). This 
adds further support to the hypothesis that lower CTC 
count may be correlated with better survival (61).

A phase III trial is ongoing to test the effect of belagen-
pumatucel in patients with stage IIIB, IV NSCLC who 
demonstrate initial responsiveness to platinum-based 
therapy.

There have been several investigations involving 
immune stimulation through TGF-β “blockade.” One 
technique involves a TGF-β type 1 receptor kinase inhibi-
tor, SM16. Inhibition of this particular receptor was shown 
to increase immunostimulatory cytokines and ICAM-1. In 
addition, there was an increase in number and function 
of antitumor CD8+ cells in mice containing lung cancer 
tumors (62).

Another study was done to explore the effectiveness 
of silencing TGF-β1. Tumor cultures of SW1 melanoma 
and Ag104 sarcoma cells were transfected with short 
hairpin RNA (shRNA) that inhibited the production of 
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The clinically meaningful survival advantages seen for 
stage IIIB patients are encouraging. A phase III random-
ized trial of L-BLP-25 for unresectable stage III NSCLC 
patients with response or stable disease after chemoradia-
tion is now ongoing.

IDM-2101

IDM-2101 is a peptide-based vaccine designed to induce 
CTLs against five TAAs frequently overexpressed in 
NSCLC (i.e., carcinoembryonic antigen [CEA] (85), p53 
(86,87), HER-2/neu (88,89), and melanoma antigens 
[MAGE] 2 and 3) (90). These TAAs have been used in 
previous vaccine studies involving patients with NSCLC 
(91–110) and have been extensively characterized in the 
literature. IDM-2101 is composed of 10 synthetic peptides 
from these TAAs. Nine of the peptides represent CTL 
epitopes and each CTL epitope is restricted by HLA-A2.1 
and at least one other member of the HLA-A2 superfamily 
of MHC class I molecules, providing coverage of approxi-
mately 45% of the general population. The 10th synthetic 
peptide is the pan-DR epitope (PADRE), a rationally 
designed helper T-lymphocyte epitope included to augment 
the magnitude and duration of CTL responses (111).

IDM-2101 was tested in an open-label phase II study 
involving 63 HLA-A2–positive stage IIIB/IV NSCLC 
patients who had failed prior chemotherapy (112). No sig-
nificant adverse events were noted. Low-grade erythema 
and pain at the injection site were the most common side 
effects. One-year survival in the treated patients was 60%, 
and median survival was 17.3 months. One complete and 
one partial response were identified. Survival was longer 
in patients demonstrating an immune response to epitope 
peptides (P < 0.001). Overall, treated patients appeared to 
do well when compared with historical controls.

Immune responses in 33 patients collectively showed 
induction of CTLs to all of the vaccine epitopes. Although 
patient-to-patient variability was observed with respect to 
the frequency and magnitude of the CTL responses, 85% 
of tested patients responded to at least two epitopes. These 
data are consistent with results from an earlier phase I trial 
(113). Moreover, longer survival was shown in patients 
achieving responses to two or more epitopes (P < 0.001).

B7.1 Vaccine

B7.1 (CD80+) is a costimulating molecule associated with 
induction of a T- and NK-cell response (96,114–116). 
Tumor cells transfected with B7.1 and HLA molecules 
have been shown to stimulate an avid immune response 
by direct antigen presentation and direct activation of 
T cells, in addition to allowing cross-presentation (117–
120). In a Phase I trial, Raez et al. (121) used an allo-
geneic NSCLC tumor cell line (AD100) transfected with 
B7.1 (CD80) and HLA-A1 or -A2 to generate CD8 CTL 
responses. Patients who were HLA-A1 or -A2 allotype 

a 25-fold higher GM-CSF–secretion concentration with 
the bystander GVAX vaccine.

α-Galactosylceramide

αGalCer is a glycolipid-based vaccine that has demon-
strated capacity to activate Vα24 NK T cells which have 
been shown to demonstrate antitumor activity via several 
mechanisms including the production of cytokines such as 
IFN-γ. Combination with peripheral blood mononuclear 
cells pulsed with low-dose IL-2 and GM-CSF appeared to 
enhance vaccine activity (76). A phase 1 study involving 
11 patients with NSCLC demonstrated minimal toxicity 
(grade I or II toxicity) and predicted immune response. 
However, only two patients achieved stable disease.

In a more recent phase I–II trial of the same vaccine, 
23 advanced-stage NSCLC patients received treatment 
and 17 patients completed the study which took place 
from February 2004 to August 2006 (77). In 10 of the 
17 patients, there was a measurable increase in IFN-γ 
producing cells. More significantly, those 10 patients had 
a 2-year survival of 60% and also had an appreciably 
greater median survival of 31.9 months in comparison 
with the 9.7-month median survival of the unresponsive 
patients (P = 0.0015). The median survival of the unre-
sponsive patients is consistent with historical survival of 
similar patients undergoing standard treatment.

L-BLP-25

Mucin (MUC)-1 is a high molecular-weight protein con-
taining large amounts of o-linked sugars and is expressed 
on the apical borders of most normal secretory epithelial 
cells (78). It is expressed in many cancers, including NSCLC 
(79). Tumor-associated MUC1 is antigenically distinct 
from normal MUC1 (80). Recent studies have identified 
that MUC1 is associated with cellular transformation, as 
demonstrated by tumorigenicity (81), and can confer resis-
tance to genotoxic agents (82). Both the oligosaccharide 
portion and the tandem repeat of the MUC extracellular 
domain have potential for immunotherapeutic activity.

L-BLP-25 vaccine has been tested in three NSCLC 
trials (83). Three doses and two regimens were tested, 
including one regimen using liposomal IL-2 as an adju-
vant. Recently, results of a phase III study (84) of L-BLP-25 
in 171 advanced-stage NSCLC patients were reported 
(75). Patients with stable or responding stage IIIB or IV 
NSCLC following standard first-line chemotherapy were 
randomized to either L-BLP-25 (88 patients) or best sup-
portive care (83 patients). There was a 4.4-month longer 
median survival for patients on the L-BLP-25 arm (17.4 
vs. 13 months), although this did not reach statistical sig-
nificance. The median survival for a subset of 35 stage 
IIIB patients who received vaccine was 30 months versus 
13.3 months for the 30 who received best supportive care 
(P = 0.09). There were no major toxicities.
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survival, and motility. EGF transduces signaling through 
EGFR following binding to this cell surface receptor, ulti-
mately resulting in the stimulation of cell proliferation. 
The immunotherapy developed by Ramos et al. (126) 
induces an immune response against self-produced EGF. 
This vaccine is a human recombinant EGF linked to a 
P64K recombinant carrier protein from Neisseria men-
ingitides. Several pilot trials have been completed (126–
128). Results from these studies have demonstrated that 
vaccination with EGF is immunogenic and appears to be 
well-tolerated.

In one study, 43 patients with stage IIIB/IV NSCLC 
randomly received either a single dosage or a double dose 
(126). Immune response against EGF was measured in 
38 of the 43 patients, and 15 achieved a good antibody 
response (GAR) against EGF following vaccination. 
Kaplan-Meyer analysis separating patients by dose pre-
dicted a median estimated life expectancy of 6.4 months 
for patients who received the single dose, and 8.4 months 
for the patients who received the double dose. Based on 
immune response, however, patients classified as GARs 
had a life expectancy estimated at 12 months, whereas 
those who had a less favorable GAR had a life expectancy 
of 7 months.

Two other studies conducted by Gonzalez and col-
leagues compared the effect of different adjuvants on 
patients’ antibody response (127,128). The patients were 
treated each time when antibody titers decreased to at least 
50% of their induction-phase peak titer. The pooled data 
of the two trials suggested that higher antibody responses 
were obtained when the vaccine was emulsified in adjuvant 
montanide ISA 51 or when low-dose cyclophosphamide 
was administered before the vaccination; however, the dif-
ference was not statistically significant. Median survival 
of GAR patients was 9.1 months, whereas poor antibody 
responding patients had a survival of 4.5 months.

Previous results described justified a randomized 
phase II trial of 80 late-stage (IIIB/IV) NSCLC patients 
that was recently completed (129). Patients were random-
ized to either vaccine or standard therapy. Mild, grade 1 
and 2 toxic events were associated with the vaccine. The 
investigators classified patients whose anti-EGF antibody 
titers were at least 1:4,000 or four times their preimmu-
nization values to have GAR. Of the vaccinated patients, 
51.4% of them achieved GAR while no patients achieved 
GAR in the control group. The vaccine did decrease EGF 
concentration in 64.3% of vaccinated patients and those 
who achieved GAR survived significantly longer, with an 
11.7-month median survival as opposed to 3.6 months in 
those with poor antibody response. Overall, there was a 
slight advantage for vaccinated patients with a 6.47-month 
median survival versus the 5.33-month median survival 
for the patients on the control arm. One-year survival was 
nonsignificantly higher (P = 0.096) in vaccinated patients 
at 67% in comparison with 33% for the controls.

received the corresponding HLA-matched vaccine. A total 
of 19 patients with stage IIIB/IV NSCLC were treated, 
and most had received prior chemotherapy. Patients who 
were neither HLA-A1 nor -A2 received the HLA-A1–
transfected vaccine.

A total of 18 patients received at least one full course 
of treatment. One patient was removed before the comple-
tion of the first course due to a serious adverse event not 
associated with the vaccine. Three more patients experi-
enced serious adverse events, which were also not associ-
ated with the vaccine. Side effects included minimal skin 
erythema for four patients.

One patient showed a partial response for 13 months 
and five patients had stable disease ranging from 1.6 
to >52 months (121,122). The Kaplan-Meyer estimate 
for the survival for the 19 patients was 18 months. One-
year survival was estimated at 52%. The low toxicity and 
good survival in this study suggested benefit from clinical 
vaccination.

L523S Vaccine

L523S is a lung cancer antigen originally identified 
through screening of genes differentially expressed in can-
cer versus normal tissue (123,124). L523S is expressed 
in approximately 80% of NSCLC cells (123,124). The 
immunogenicity of L523S in humans was initially shown 
by detecting the presence of existent antibody and helper 
T-cell responses to L523S in patients with lung cancer. 
Subsequent studies further validated L532S immunogenic-
ity by demonstrating that human CTLs could specifically 
recognize and kill cells that express L523S. In preclinical 
studies, the gene proved safe when injected intramuscu-
larly as an expressive plasmid (pVAX/L523S) and when 
delivered following incorporation into an EIB-deleted ade-
novirus (Ad/L523S). In a phase I clinical trial in 13 stage 
IB, IIA, and IIB NSCLC patients, both delivery vehicles 
(pVAX/L523S and Ad/L523S) were used to administer the 
gene to three patients in each of three cohorts (125). No 
significant toxic effect was identified. All but one patient 
demonstrated at least twofold elevation in antiadenovirus 
antibodies; however, despite the positive preclinical stud-
ies, vaccination induced an immune response in only one 
patient in the phase I study. The reasons for a lack of sig-
nificant detectable immune response are unknown. The 
use of alternative formulations and/or regimens and the 
assessment of other surrogate immune function param-
eters might be considered. Two patients developed dis-
ease recurrence and all remained alive after a median of 
290 days follow-up.

Epidermal Growth Factor Vaccine

Overexpression of epidermal growth factor receptor 
(EGFR) and its ligand, epidermal growth factor (EGF), 
has been linked with the promotion of cell proliferation, 
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Transcriptase Catalytic Subunit Antigen Vaccine

It is well established that T cells of the human immune 
system can recognize telomerase (147–155). Although 
telomerase is also expressed in some normal cells, such 
as bone marrow stem cells (156) and epithelial cells in 
gastrointestinal tract crypts (157), it is highly expressed 
in virtually all cancer cells. GV1001 is a unique peptide 
corresponding to a sequence derived from the active site 
of the catalytic subunit of human telomerase reverse tran-
scriptase (hTERT). It contains the 611–626 sequence of 
hTERT and is capable of binding to molecules encoded 
by multiple alleles of all three loci of HLA class II (158). 
HR2822 is a second peptide corresponding to sequences 
540–548 of hTERT. Brunsvig et al. (159) initiated a phase 
I/II trial involving 26 patients with late-stage NSCLC. No 
clinically significant toxic events related to the treatment 
were reported. Importantly, no bone marrow or severe 
gastrointestinal toxicities were observed. Side effects were 
mild and included flu-like symptoms, chills, and fever.

Eleven patients demonstrated an immune response 
against GV1001, and only two patients demonstrated a 
response to HR2822. After receiving booster shots, two 
patients were converted to immune responders. One 
patient with stage IIIA NSCLC showed a complete tumor 
response and developed GV1001-specific CTLs that could 
be cloned from peripheral blood. The median survival 
time for all 26 patients was 8.5 months.

Dexosome Vaccine

Exosomes are cell-derived lipid vesicles that express high 
levels of a narrow spectrum of cell proteins (160–162). 
Vesicles released from DCs (dexosomes) have been dem-
onstrated to play a role in the activation of the immune 
response (163,164). In vitro, dexosomes have the capac-
ity to present antigen to naïve CD8+ cytolytic T cells and 
CD4+ T cells (161,165). Purified dexosomes were shown to 
be effective in both suppressing tumor growth and eradi-
cating an established tumor in murine models (160). Morse 
et al. developed a vaccine using DC–derived exosomes 
loaded with MAGE tumor antigens (166). The phase I trial 
enrolled 13 patients with stage IIIB or IV NSCLC demon-
strating MAGE-A3 or -A4 expression. Autologous DCs were 
harvested to produce dexosomes. They were loaded with 
MAGE-A3, -A4, -A10, and -3DPG4 peptides. Dexosome 
therapy was administered to nine patients. Patients experi-
enced grade 1 to 2 toxicities, including injection-site reac-
tions, flu-like symptoms, edema, and pain. Three patients 
exhibited delayed-type hypersensitivity reactions against 
MAGE peptides. Survival ranged from 52 to 665 days.

α(1,3)-Galactosyltransferase

α(1,3)-Galactosyltransferase (agal) epitopes are present 
on the surface of most nonhuman mammalian cells and 

A subsequent study investigated the same EGF-based 
vaccine in combination with chemotherapy in 20 advanced 
NSCLC patients (130). No serious side effects related to 
the combination therapy were observed. Also, median 
survival and 1-year survival were both encouraging at 9.3 
months and 70%, respectively, suggesting support of fur-
ther testing in combination with chemotherapy.

Melanoma-Associated Antigen E-3 Vaccine

MAGE-3 is the most commonly expressed testicular can-
cer antigen and is expressed in testicular germ cells, but 
no other normal tissue (131). It is aberrantly expressed in 
a wide variety of tumors, including NSCLC (131). Several 
CD8+ T-cell epitopes of MAGE-3 have been identified in 
vitro (132–140), including HLA-A1–restricted epitope 
168–176 (141), and HLA-A2–restricted epitope 271–279 
(142). Based on these findings, synthetic peptides corre-
sponding to these epitopes have been introduced into clini-
cal vaccination studies in which they were associated with 
regression of melanoma in individual cases (143). Clinical 
vaccination studies using full-length recombinant pro-
teins may offer potential advantages in that this antigen 
includes the full range of epitopes for CD4+ and CD8+ T 
cells. In addition, it is likely that protein vaccination leads 
to presentation of epitopes in the context of various HLA 
alleles, and therefore, this type of vaccine should be appli-
cable to any patient regardless of HLA restriction (144).

Atanackovic et al. (144) used a MAGE-3 protein as 
a vaccine to induce CD4+ T cells in patients with stage I 
or II NSCLC. All patients had undergone surgical resec-
tion of the primary lung tumor and had no evidence of 
disease at the onset of the study. Of the nine patients who 
received the MAGE-3 protein alone, three developed an 
increase in antibodies against MAGE-3 protein and one 
had a CD8+ T-cell response. By comparison, of the eight 
patients who received MAGE-3 antigen combined with 
the adjuvant ASO2B, seven showed an increase in serum 
concentrations of anti-MAGE-3 and four had a CD4+ 
response to HLA-DP4–restricted peptide. Based on these 
results, further testing in a larger randomized phase II trial 
was completed and recently reported (145), involving 182 
(122 vaccine and 60 placebo) early-stage (IB, II) NSCLC 
MAGE-A3 positive patients. No significant toxicity issues 
were identified, and preliminary analysis revealed a 33% 
disease-free survival improvement in the vaccinated arm 
compared with the placebo arm. Results trended toward 
significance in the stage II patients.

Currently, a randomized, double-blind, placebo-
 controlled phase III trial with a target accrual of over 2,200 
stage IB, II, and IIIA NSCLC patients is ongoing. The trial 
began in June 2007 and explores the vaccine both follow-
ing adjuvant chemotherapy and without  chemotherapy. 
The primary end-point for the trial is  disease-free 
survival (146).
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received two to four courses and then continued DC ther-
apy every 2 months for 2 more years. Group A was treated 
with docetaxel while group B received calboplatin and 
paclitaxel. In both cases, DC therapy was administered 
5 to 7 days after chemotherapy. Twenty-eight patients in 
total received the DC therapy.

There were no significant toxicities other than low-
grade fever, chills, fatigue, and nausea on the day of immu-
notherapy. Two- and 5-year survival of 88.9% and 52.9%, 
respectively, are encouraging and support an evaluation of 
efficacy in a phase III trial. There was also a correlation 
between the number of cells transferred and the rate of 
patient survival. Patients receiving more than 5 × 1010 cells 
had a 5-year survival rate of 80.8% compared with 38.5% 
in those who received less.

Cyclophilin B

Cyclophilin-B (CypB) is a ubiquitous protein playing 
an important role in protein folding (172,173), and is 
expressed in both normal and cancerous cells. CypB-
derived peptides are recognized by HLA-A24 restricted 
cytotoxic lymphocytes (CTL) isolated from lung adeno-
carcinoma. CypB peptides induce CTLs from leukemic 
patients, but failed to induce an immune response in cells 
isolated from patients with epithelial cancer or normal 
donors. Modification of a single amino acid of the CypB 
gene increases its immunogenicity and results in CTL acti-
vation in both cancer patients and healthy donors (174).

Gohara et al. (175) investigated the immune response 
in advanced-stage lung cancer patients treated with CypB 
vaccine. Sixteen HLA-A24 positive patients, 15 with 
NSCLC and 1 with small cell lung cancer (SCLC), were 
treated with CypB or modified CypB peptide vaccine fol-
lowing completion of chemotherapy. All patients had stable 
disease at 5-week follow-up. Following vaccination, IFN-γ 
production by peripheral blood mononuclear cells isolated 
from patient sera was elevated in 3 of 12 patients. Overall 
survival for NSCLC patients receiving CypB or modified 
CypB vaccine was 67+ and 28+ weeks, respectively. One 
patient with SCLC was not evaluable for response.

1E10 Vaccine

The 1E10 vaccine is a murine anti-idiotypic antibody that 
was primarily created by the immunization of BALB/c 
mice containing P3, an idiotypic antibody which recog-
nizes gangliosides containing NeuGc. Such gangliosides 
are reasonable targets for immunotherapeutic techniques 
as they have been detected in a number of different tumor 
types, including lung cancer. In fact, there has been recent 
data to suggest that NeuGcGM3 is correlated closely with 
tumor progression (176). It was hypothesized that the 1E10 
idiotypic vaccination could produce an idiotypic cascade 
specific to the NeuGcGM3 antigen.

are the primary antigen source responsible for hyperacute 
xenograft rejection. Expression of agal epitopes after gene 
transfer (using a retroviral vector) in human A375 mela-
noma cells prevented tumor formation in nude mice (167).

Preliminary results by Morris et al. (168), using 
three irradiated lung cancer cell lines genetically altered 
to express xenotransplantation antigens by retroviral 
transfer of the murine agal gene, were recently described 
in seven patients with stage IV, recurrent or refractory 
NSCLC. Toxicity involved grade 1 to 2 pain at the injec-
tion site, local skin reaction, fatigue, and hypertension. 
Four patients had stable disease for >16 months.

NSCLC Dendritic Cell Vaccines

DCs are potent antigen-presenting cells. As part of a phase 
II study, Hirshowitz et al. 169 (17–21) recently generated 
DC vaccines from CD14+ precursors, which were pulsed 
with apoptotic bodies of an allogeneic NSCLC cell line 
that overexpressed Her2/neu, CEA, WT1, MAGE-2, and 
survivin. A total of 16 patients with stage IA–IIIB NSCLC 
were vaccinated. There were 10 patients who experienced 
skin erythema at the injection site and 4 patients expe-
rienced minor fatigue. No patients experienced a serious 
adverse event. Five patients showed a tumor antigen-
 independent response, and 6 patients showed an antigen-
specific response. The study concluded that the vaccine 
was safe and demonstrated biological activity.

Another phase I trial utilizing peripheral blood mono-
nuclear cells from 15 patients with several different meta-
static tumor types (melanoma, lung, renal cell carcinoma, 
sarcoma, and breast cancer) was also recently described 
(170). The DCs were stimulated with autologous tumor 
lysates and infused intravenously every 21 days for four 
total treatments. Toxicity was mild and included fever on 
the day of injection as well as well as asthenia. Seven of the 
15 patients experienced stable disease for at least 3 months 
and 7 progressed while on treatment. The median time 
to progression was 3 months indicating that this DC 
approach should be pursued in further clinical testing.

Others have looked at use of postsurgical chemo-
therapy in combination with immunotherapy utilizing 
DCs and activated T-killer cells in late-stage lung cancer 
patients (171). The T-killer cells and DCs were harvested 
from tumor-draining lymph nodes and supplemented 
with peripheral blood lymphocytes. Thirty-one patients 
received four courses of chemotherapy in combination 
with immunotherapy every 2 months over the course of 
2 years. These 31 patients were divided into two groups—
those with N2 disease (group A) and those with N0 or 
N1 (group B). Group A received chemotherapy (calbopla-
tin and paclitaqxel) and then underwent surgery. Group 
B went straight to surgery, and then both groups received 
a combination of chemotherapy and DC therapy or 
 chemotherapy only. Those eligible for combination therapy 
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Recently, a new vaccine was synthesized which utilizes 
the fucosyl-GM1 molecule but has been altered to enhance 
immunogenicity. The investigators have incorporated an 
MHC-II binding site into the existing carbohydrate which 
should aid in its activation of T cells. In particular, the cho-
sen sequence has the capacity to bind up to nine variants 
of the human HLA-DR. Clinical testing will be underway 
in the near future (183).

BEC2

Ganglioside GD3 is a cell surface glycosphingolipid with 
differential expression limited to cells of neuroectodermal 
origin and a subset of T lymphocytes (184–186). High lev-
els of expression have been demonstrated in SCLC tumors 
and cell lines (187). Because GD3 is present at low levels in 
normal tissues, it is poorly immunogenic. BEC2, an anti-
idiotypic IgG2b mouse antibody that is structurally simi-
lar to GD3, demonstrated strong immunogenic properties 
in patients with melanoma (188).

Grant et al. (189) treated 15 SCLC patients, 8 with 
extensive-stage and 7 with limited-stage disease, with 
BEC2 vaccination. Thirteen patients were evaluable for 
response; all developed IgM antibodies to BEC2, and 
3 developed IgG antibodies. Duration of antibody produc-
tion was variable, with at least 1 patient demonstrating 
measurable antibody production 1 year following treat-
ment. Median survival was 20.5 months from diagnosis, 
and patients with measurable anti-GD3 antibodies showed 
the longest relapse-free intervals. When compared with 
SCLC patients treated with conventional therapy alone, 
the authors found patients treated with BEC2 vaccine to 
have longer than expected survival time, though not sta-
tistically significant. Significant toxicity was minimized to 
local skin irritation.

In a randomized, phase III study of BEC3 vaccine 
in combination with standard chemotherapy, 515 SCLC 
patients either received standard therapy plus vaccine or 
were randomized to standard treatment (190). Those ran-
domized to the vaccination arm received five vaccinations 
of Bec2 (2.5 mg)/BCG cavvine over a 10-week period. The 
primary side effects were mild including transient skin 
ulcerations and mild flu-like symptoms.

The results did not show a clinical benefit, however. 
In fact, it was concluded that there was no improvement 
in survival, progression-free survival, or quality of life 
when receiving vaccine. Median survival was 14.3 months 
in vaccinated patients and 16.4 months in standard treat-
ment patients.

PolySA

Polysialic acid (polySA) is found on the surface of Gram-
negative bacteria (such as group B meningococcus), 
embryonic neural crest cells, and some malignancies of 

In a recent study aimed to investigate efficacy of the 
1E10 vaccine, 20 advanced-stage NSCLC patients were 
administered 15 doses of the vaccine over an 18-month 
period (177). Those patients who received at least five 
doses of the vaccine were considered immunologically 
evaluable.

The study investigated via serum analysis whether 
antibodies against both the 1E10 vaccine itself and against 
the NeuGcGM3 ganglioside were produced in vaccinated 
patients. Of the 20 patients, 18 elicited an immune response 
against the vaccine and 16 produced an immune response 
against the ganglioside. The 1E10 antibodies, however, 
showed no success in inducing cell death and it was devel-
opment of the anti-NeuGcGM2 antibodies that showed 
a distinct significance in patient survival. The median 
survival time of all patients on study was 10.6 months, 
but a dramatic improvement in survival was observed in 
patients who developed antibodies against NeuGcGM3 
(median survival of 14.26 months) compared with those 
who did not (median survival 6.35 months). There were 
no significant advanced-grade side effects observed in the 
study.

SMALL CELL LUNG CANCER VACCINE  �

DEVELOPMENT

Fucosyl GM1

The ganglioside fucosyl-GM1 is a carbohydrate molecule 
present in most cases of SCLC (178,179), but absent in 
normal lung tissue. Immunostaining has demonstrated 
the presence of fucosyl-GM1 in culture media from SCLC 
cell lines, in tumor extracts, and in serum of mouse xeno-
grafts (180). Fucosyl-GM1 was detected in the serum of 
4 of 20 SCLC patients with extensive-stage disease, but 
was not present in the serum of 12 patients with non-
SCLC or in 20 healthy volunteers (180). The specificity 
of fucosyl-GM1 to SCLC makes it a potential target for 
immunotherapy.

Dickler et al. (181) treated 13 patients with Fuc-GM1 
isolated from bovine thyroid tissue; 10 patients completed 
the study and were evaluable. All 10 patients demonstrated 
high titers of IgM and IgG antibodies to Fuc-GM1. The 
most common toxicity was local skin reaction, lasting 2 
to 5 days. Three of 6 patients who completed the entire 
course of vaccinations remained relapse free at 18, 24, 
and 30 months from diagnosis. Subsequently, Krug et al. 
(182) administered synthetic fucosyl-GM1 after conven-
tional chemotherapy to 17 patients. Five of 6 patients at 
the high dose demonstrated increased levels of antifuco-
syl GM1 IgM. Three of 6 patients receiving the middle 
dose showed antifucosyl GM1 IgM production, and none 
of 5 patients at the low dose showed elevated IgM levels. 
Toxicities were minimal.
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CONCLUSION �

In conclusion, several approaches to vaccine therapy in 
lung cancer demonstrate promise of clinical efficacy. All 
appear remarkably safe. Limitations include identification 
of sensitive subset patient populations and surrogate mea-
sures of relevant immune reactivity. Vaccines described in 
this review focus on different elements of immune reactiv-
ity (i.e., antigen exposure, dendritic activation, T-cell acti-
vation, inhibition of T regulatory cells, inhibition of TGF-β 
expression). Any one of these approaches has demonstrated 
evidence of activity in subsets of patients. However, phase 
III trials are required to determine conclusive relevance to 
lung cancer therapy. Data appear encouraging particularly 
in a setting of minimal disease early in the therapeutic 
course and at earlier stages of disease. It is also enticing to 
consider combinations of vaccines, particularly those with 
varied mechanisms of action. Future trials will undoubt-
edly explore combined vaccine approaches, or products 
with multiple immune-component modulation.
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