

First-in-human results of STX-478, a mutant-selective PI3Kα inhibitor, in advanced solid tumor patients

<u>Alberto J. Montero¹</u>, Antonio Giordano², Komal Jhaveri³, Pamela Munster⁴, Jordi Rodon⁵, Patricia LoRusso⁶, Douglas Orr⁷, Jorge Bartolomé⁸, Antoine Italiano⁹, Anthony Elias¹⁰, Aixa Soyano¹¹, Maria de Miguel¹², Bernard Doger¹³, Gennaro Daniele¹⁴, Joyce O'Shaughnessy¹⁵, Tatiana Hernández¹⁶, Robert Wesolowski¹⁷, Cristina Saura¹⁸, Mark Chao¹⁹, Dejan Juric²⁰

¹University Hospitals/Seidman Cancer Center Case Western Reserve University, Cleveland, USA; ²Dana-Farber Cancer Institute, Boston, USA; ³Memorial Sloan Kettering Cancer Center, New York, USA; ⁴University of California San Francisco, San Francisco, USA; ⁵MD Anderson Cancer Center, Houston, USA; ⁶Yale University, New Haven, USA; ⁷Mary Crowley Cancer Research, Dallas, USA; ⁸Hospital Clínico San Carlos and IdISSC, Madrid, ESP; ⁹Institut Bergonié, Bordeaux, FRA; ¹⁰University of Colorado Cancer Center, Aurora, USA; ¹¹Moffitt Cancer Center, Tampa, USA; ¹²START Madrid – HM CIOCC, Madrid, ESP; ¹³START Madrid – FJD, Madrid, ESP; ¹⁴Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, ITA ¹⁵Baylor University Medical Center, Texas Oncology, Sarah Cannon Research Institute, Dallas, USA; ¹⁶START Barcelona – HM Nou Delfos, Barcelona, ESP; ¹⁷The Ohio State University Comprehensive Cancer Center, Columbus, USA; ¹⁸Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, ESP; ¹⁹Scorpion Therapeutics, Inc., Boston, USA; ²⁰Termeer Center for Targeted Therapies, Massachusetts General Hospital Cancer Center, Boston, USA

Declaration of Interests

Alberto J. Montero, M.D.

Honoraria: Gilead, AstraZeneca, OncoSec, Scorpion Therapeutics Consulting or Advisory Role: Welwaze, Paragon Healthcare

The PI3K Pathway is Commonly Mutated in Cancer

- PI3K pathway alterations are a major driver in cancer
- PI3Kα is mutated in 36% of breast cancers and 12.7% of all cancers¹

¹MyCancerGenome.org 08/2024

Alberto Montero, M.D.

STX-478 is an Oral, Allosteric, Mutant Selective PI3Kα Inhibitor

- STX-478 is an allosteric, mutant-selective inhibitor that selectively targets mutant PI3Kα and minimizes wildtype toxicities
- STX-478 is an oral, once-daily, low dose, CNS-penetrant molecule

WT: wildtype

STX-478 is Metabolically Safe and Efficacious in PI3Kα Kinase and Helical Domain Mutant Tumors

Improved Efficacy & Selectivity vs Clinically-Relevant Dose Alpelsib in PI3Kα^{H1047R} Cal33 HNSCC CDX

STX-478 demonstrated in vivo efficacy and safety in preclinical models superior to clinicallyrelevant doses of alpelisib, a non-mutant selective PI3Kα inhibitor

¹Buckbinder, St. Jean, et al., 2023, BrCA: breast cancer, HNSCC: head and neck squamous cell carcinoma

First-in-Human Phase 1 Trial Design of STX-478 in Advanced Solid Tumors

Monotherapy Dose Escalation (Daily Dosing)

initial monotherapy expansion are presented

Key Eligibility Criteria

- PIK3CA helical and kinase domain mutant advanced solid tumors who received prior SOC¹
- ECOG 0-1
- · Adequate organ function
- Fasting plasma glucose < 140 mg/dL and HbA1c < 7.0%
- · Type 2 diabetics controlled on medications permitted
- Prior PI3K/AKT/mTOR inhibitor therapy permitted if stopped due to intolerance

Key Endpoints

- · Safety and tolerability
- PK, PD, RP2D
- Anti-tumor activity assessed by ORR by RECIST v1.1, DOR, PFS, OS
- Patient reported outcomes via EORTC QLQ-C30 score

Data as of 21 June 2024

BrCA: breast cancer, DL: dose level, DOR: duration of response, HNSCC: head and neck squamous cell carcinoma, HR: hormone receptor, ORR: objective response rate, OS: overall survival, PD: pharmacodynamics, PFS: progression-free survival, PK: pharmacokinetics, RP2D: recommended Phase 2 dose, SOC: standard of care, ¹monotherapy cohorts

Patient Demographics and Baseline Characteristics

	All Tumors ¹ (n=61)	HR+/HER2-Breast Cancer (n=29)	Other Solid Tumors (n=32)
Age, median (range), yr	64 (32–82)	64 (37 – 81)	65 (32 – 82)
Female, n (%)	50 (82)	29 (100)	21 (66)
Male, n (%)	11 (18)	0 (0)	11 (34)
ECOG, n (%) 0 1	25 (41) 36 (59)	13 (45) 16 (55)	12 (38) 20 (63)
Glucose metabolism, n (%) Pre-diabetic Type 2 Diabetic	23 (38) 10 (16)	11 (38) 4 (14)	12 (38) 6 (19)
PI3Kα-mutation, n (%) Kinase domain Helical domain Double mutant Not available	33 (54) 22 (36) 5 (8) 1 (2)	17 (59) 8 (28) 3 (10) 1 (3)	16 (50) 14 (44) 2 (6) 0 (0)
Visceral disease (%)	46 (75)	25 (86)	21 (66)
Median prior metastatic therapies (range)	3 (1 – 7)	3 (1 – 7)	4 (1 – 7)
Prior CDK inhibitor, n (%)	28 (46)	28 (97)	0 (0)
Prior PI3K α - or mTOR or AKT-inhibitor, n (%)	13 (21)	12 (41)	1 (3)

- Most common solid tumors enrolled include breast cancer (54%), endometrial cancer (11%), urothelial cancer (8%), HNSCC (5%), and CRC (5%)
- 54% of patients are prediabetic or have Type 2 diabetes, typically excluded from other PI3K inhibitor trials
- Patients are heavily pre-treated, including 41% of HR+/HER2- breast cancer patients receiving prior PI3K pathway inhibitors

¹ Data as of 21 June 2024, ²definition based on HbA1c/fasting glucose levels, medical history and diabetic medication use CRC: colorectal cancer, HR: hormone receptor, HNSCC: head and neck squamous cell

STX-478 Pharmacokinetic and Target Coverage Profile

- STX-478 exposure is dose proportional and linear, with an estimated half-life of around 60 hours
- At doses ≥ 40mg QD, STX-478 exceeded the average exposures needed for mouse in vivo efficacy
- STX-478 achieved target coverage significantly higher than other PI3K inhibitors at their RP2D

Alberto Montero, M.D.

¹ Based on mouse efficacious exposure 100mg/kg in 3 CDX models ² Based on in vitro T47D (H1047R) pAkt assay ³ Matched unbound pAkt suppression in head-to-head benchmarked in vitro assays

Summary of STX-478 Safety

Treatment-Related AEs (TRAEs), N=61 Patients

Adverse Event ¹	Grade 1	Grade 2	Grade 3	Grade 4	Any Grade
TRAEs occurring in \geq 15%, n (%)					
Fatigue	5 (8)	8 (13)	5 (8)	0	18 (30)
Hyperglycemia	8 (13)	6 (10)	0	0	14 (23)
Nausea	11 (18)	1 (2)	0	0	12 (20)
Diarrhea	6 (10)	3 (5)	0	0	9 (15)
Other TRAEs of Interest, n (%)					
Rash ²	5 (8)	1 (2)	0	0	6 (10)
AST/ALT increased ³	2 (3)	0	5 (8) ⁴	1 (2)4	8 (13)
Blood bilirubin increased	1 (2)	0	0	0	1 (2)
Neutropenia ⁵	0	0	0	0	0
Anemia	1 (2)	0	0	0	1 (2)
Thrombocytopenia ⁶	1 (2)	1 (2)	0	0	2 (3)
Creatinine increase	0	0	0	0	0
AEs leading to discontinuation	0	0	0	0	0

- STX-478 was well-tolerated with most toxicities mild/moderate and transient
- No Grade ≥ 3 PI3Kα wildtype toxicities (hyperglycemia, diarrhea and rash) seen
- MTD was reached at 100mg
 - 2 DLTs (Grade 3 myalgia and paresthesia) observed at 160mg and were transient, resolving rapidly after brief dose interruption
- AST/ALT elevations were asymptomatic, transient and reversible, with no Hy's Law criteria met
- No patient discontinued STX-478 due to an AE

No Grade 5 TRAEs were observed

¹Per CTCAE v5.0, ²includes all rash-related terms, ³includes patients with either AST or ALT elevation, ⁴one each occurred at 160mg dose, which exceeded the MTD of 100mg, ⁵includes neutropenia and neutrophil count decreased, ⁶includes thrombocytopenia and platelet count decreased

Alberto Montero, M.D.

Impact of STX-478 on Fasting Glucose Levels

- Minimal changes in fasting glucose have been observed at all STX-478 dose levels
- No CTCAE v5.0 Grade 3 or higher hyperglycemia has been observed at any dose level

STX-478 Anti-Tumor Activity

Best overall response N (%)	All Tumors (n=43)	HR+/HER2- breast (n=22)	Gynecologic tumors (n=9)
ORR ² (cPR + uPR)	9 (21)	5 (23)	4 (44)
DCR (CR+PR+SD)	29 (67)	15 (68)	6 (67)
cPR	4 (9)	3 (14)	1 (11)
uPR*	5 (12)	2 (9)	3 (33)
SD	20 (47)	10 (46)	2 (22)
PD	14 (33)	7 (32)	3 (33)

*All 5 patients with uPRs have converted to cPRs after the data cut

- STX-478 monotherapy ORR of 21 23% in all-comers and breast cancer, respectively, compares favorably to approved PI3K pathway inhibitors (monotherapy ORR 4 6%)^{3,4}
- Multiple responses are seen in both PIK3CA kinase and helical domain mutations, in multiple solid tumors, at multiple STX-478 dose levels, and in patients receiving prior PI3K/AKT/mTOR inhibitors

¹ Efficacy evaluable and measurable disease patients shown, ²includes unconfirmed and confirmed PRs, ³Banerji et al., 2018, ⁴Juric et al., 2018. BC: breast cancer, CC: cervical cancer, cPR: confirmed partial response, CRC: colorectal cancer, DCR: disease control rate, EC: endometrial cancer, HNSCC: head and neck cancer, UC: urothelial cancer, uPR: unconfirmed partial response

Alberto Montero, M.D.

STX-478 Duration of Treatment and Response

- Median duration of treatment for all enrolled patients is 1.9 months (range 0.03 – 13 months)
- Median time to response is 1.8 months (range 1.6 – 7.2)
- Multiple responding patients have deepened their responses over time on therapy
- Patient longest in PR has been on treatment >12 months

Median follow-up is 1.8 months (range 0.1 - 12.8 months)

Alberto Montero, M.D.

PIK3CA Mutant Variant Allele Frequency and Correlation with Response

The Majority of Patients Assessed Have Decreases in PIK3CA ctDNA

Depth of ctDNA Decrease Correlates with Clinical Response¹

Patients with available longitudinal ctDNA are included. Left: patients 13 and 15 have two PIK3CA mutations, only one represented ¹Neogenomics Invision 37 gene liquid biopsy test (including PIK3CA) utilized VAF: variant allele frequency

Case Report 1: Patient with PIK3CA Mutant Endometrial Cancer (Partial Response) Pre-treatment Cycle 5

Patient History

- 71 year-old woman
- Metastatic endometrial cancer (uterine papillary serous carcinoma) with PI3Kα^{H1047R} kinase domain mutation

Prior Metastatic Treatment

6 prior lines of therapy, refractory to last 3 prior lines

- 1. Carboplatin + paclitaxel
- 2. Liposomal doxorubicin
- 3. Gemcitabine + cisplatin
- 4. Docetaxel
- 5. Gemcitabine + cisplatin

- Best response: PD
- 6. CLN-418 (B7H4 x 4-1BB bi-specific)

STX-478 Treatment and Response

- Treated with STX-478 at 100mg PO QD
- 97% decline in CA-125 tumor marker
- 99.4% decline in mutant allele burden
- uPR (37% reduction) at Cycle 3
- cPR (54% reduction) at Cycle 5, occurring after the data-cut

Target lesion

Alberto Montero, M.D.

Case Report 2: Significant Reduction in Tumor Lesions in a Patient with Head and Neck Squamous Cell Cancer

Patient History

- 76 year-old male
- HPV+ metastatic HNSCC with PI3Kα^{E545K} helical domain mutation
- Type 2 diabetes mellitus on metformin

Prior Treatment

5 prior lines of therapy

- 1. Pembrolizumab (adjuvant)
- 2. Cetuximab (adjuvant)
- 3. Carboplatin + paclitaxel
- 4. SGN-B6A (integrin beta-6 ADC)
- 5. Carboplatin + gemcitabine

STX-478 Treatment and Response

- Treated with STX-478 at 100mg PO QD
- Significant/rapid reduction of external lesions
- 92% decline in mutant allele burden
- 25% reduction (SD) in target lesions on Cycle 3 Day 1

Pre-treatment

Cycle 3 Day 1

Mutant ctDNA burden

Conclusions

- STX-478 is a potential best-in-class oral, allosteric mutant-selective PI3Kα inhibitor
- STX-478 is well-tolerated with limited PI3K wildtype toxicities in a high-risk patient population, including those with diabetes and/or intolerant to other PI3K inhibitors
- STX-478 dosing achieves target coverage several fold higher than other PI3Kα inhibitors
- STX-478 is active in breast cancer and other solid tumors, with a monotherapy ORR exceeding that of approved PI3K pathway inhibitors
- Efficacy is observed in patients with both PIK3CA kinase and helical domain mutations, with multiple responses deepening over time
- Enrollment is ongoing, including STX-478 combinations with fulvestrant +/- CDK4/6 inhibitors in patients with HR+/HER2- breast cancer

Acknowledgements

- We thank all the participants who participated on this trial, their families and loved ones who supported them, and the clinical investigators and medical staff who cared for them
- This study is sponsored by Scorpion Therapeutics (Clinicaltrials.gov identifier NCT05768139)

