First-in-Human Results of STX-478, A Mutant-Selective PI3K α Inhibitor, in HR+ Breast Cancer and **Advanced Solid Tumor Patients**

Dejan Juric¹; Antonio Giordano²; Komal Jhaveri³; Pamela Munster⁴; Jordi Rodón Ahnert⁵; Patricia LoRusso⁶; Douglas Orr⁷; Jorge Bartolomé⁸; Antoine Italiano⁹; Gennaro Daniele¹⁰; Maria de Miguel¹¹; Anthony Elias¹²; Aixa Soyano¹³; Robert Wesolowski¹⁴; Bernard Doger¹⁵; Joyce O'Shaughnessy¹⁶; Timothy Pluard¹⁷; Tatiana Hernández¹⁸; Cristina Saura¹⁹; Stefani Corsi-Travali²⁰; Courtney Ewert²⁰; Ming Lin²⁰; Fiona Xu²⁰; Simon Roberts²⁰; Bill Bradley²⁰; Dave St. Jean²⁰; Leonard Buckbinder²⁰; Mark Chao²⁰; Alberto J. Montero²¹

¹Termeer Center for Targeted Therapies, Massachusetts General Hospital Cancer Center, Boston, MA, US; ²Dana-Farber Cancer Institute, Boston, MA, US; ³Memorial Sloan Kettering Cancer Center, New York, NY, US; ⁴University of California San Francisco, CA US; ⁵MD Anderson Cancer Center, Houston, TX, US; ⁶Yale University, New Haven, CT, US; ⁷Mary Crowley Cancer Research, Dallas, TX, US; ⁸Hospital Clínico San Carlos and IdISSC, Madrid, ES; ⁹Institut Bergonié, Bordeaux, FR; ¹⁰Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, IT; ¹¹START Madrid, ES; ¹²University of Colorado, Aurora, CO, US; ¹³Moffitt Cancer Center, Tampa, FL, US; ¹⁴Ohio State University Comprehensive Cancer Center, Columbus, OH, US; ¹⁵START Madrid, ES; ¹⁰Fondazione Policlinico University Comprehensive Cancer Center, Columbus, OH, US; ¹⁵START Madrid, ES; ¹⁰Corpion Therapeutics, Inc., Boston, MA, US; ¹¹Chio State University Hospitals, Cleveland, OH, US; ¹⁸START Barcelona, ES; ¹⁹Vall d'Hebron University Hospital, Barcelona, ES; ¹⁰Scorpion Therapeutics, Inc., Boston, MA, US; ²¹University Hospitals, Cleveland, OH, US

Background

- PI3Kα is mutated in over 30% of patients with breast cancer^{1,2}
- Clinical benefit has been established with the approval of two PI3K α inhibitors (alpelisib and inavolisib) in HR+/HER2- breast cancer
- However, non-mutant selective PI3K α inhibitors cause significant wildtype toxicities, including hyperglycemia, rash, and diarrhea
- STX-478 is an allosteric, oral, CNS-penetrant, mutant-selective inhibitor that targets mutant PI3K α and minimizes wildtype toxicities³

Methods

Figure 1. STX-478 Phase 1/2 study design

Patient reported outcomes via EORTC QLQ-C30 score

Results

ALL T.

Table 1. Patient demographics

	(n=61)	(n=29)
Age, median (range), yr	64 (32 – 82)	64 (37 – 81)
Female, n (%)	50 (82)	29 (100)
Male, n (%)	11 (18)	0 (0)
ECOG 0, n (%) ECOG 1	25 (41) 36 (59)	13 (45) 16 (55)
Pre-diabetic ¹ , n (%) Type 2 Diabetic ¹	23 (38) 10 (16)	11 (38) 4 (14)
PI3Kα-mutation, n (%) Kinase domain Helical domain Double mutant / Not available	33 (54) 22 (36) 5 (8) / 1 (2)	17 (59) 8 (28) 3 (10) / 1 (3)
Visceral disease (%)	46 (75)	25 (86)
Median prior metastatic therapies (range)	3 (1 – 7)	3 (1 – 7)
Prior CDK inhibitor, n (%)	28 (46)	28 (97)
Prior fulvestrant or oral SERD	21 (34)	21 (72)
Prior chemotherapy/ADC	56 (92)	26 (90)
Prior PI3Ka- or mTOR or AKT-inhibitor, n (%)	13 (21)	12 (41)

¹Definition based on HbA1c/fasting glucose levels, medical history and diabetic medication use. BC: breast cancer

A heavily pre-treated, high-risk population is enrolled:

- >50% are pre-diabetic or have Type 2 diabetes
- >40% of breast cancer patients receiving prior PI3K pathway inhibitors previously discontinued due to toxicity

Table 2. Treatment-related AEs (TRAEs) by grade

N-61 nationts (all tumors)

N=o i patients (all tumors)							
Adverse Event ¹	Grade 1	Grade 2	Grade 3	Grade 4	Any		
TRAEs occurring in \geq 15%, n (%)							
Fatigue	5 (8)	8 (13)	5 (8)	0	18 (30)		
Hyperglycemia	8 (13)	6 (10)	0	0	14 (23)		
Nausea	11 (18)	1 (12)	0	0	12 (20)		
Diarrhea	6 (10)	3 (5)	0	0	9 (15)		
Other TRAEs of Interest, n (%)							
Rash ²	5 (8)	1 (2)	0	0	6 (10)		
AST/ALT increased ³	2 (3)	0	5 (8) ⁴	1 (2) ⁴	8 (13)		
Blood bilirubin increased	1 (2)	0	0	0	1 (2)		
Neutropenia ⁵	0	0	0	0	0		
Anemia	1 (2)	0	0	0	1 (2)		
Thrombocytopenia ⁶	1 (2)	1 (2)	0	0	2 (3)		
Creatinine increase	0	0	0	0	0		

¹Per CTCAE v5.0, ²includes all rash-related terms, ³includes patients with either AST or ALT elevation, ⁴one each oc at 160mg dose, which exceeded the MTD of 100mg, 5in neutropenia & neutrophil count decreased, 6 includes thrombocytopenia & platelet count decreased,⁷due to

- STX-478 was well-tolerated with no Grade \geq 3 PI3K α wildtype toxicities (hyperglycemia, diarrhea and rash) seen
- MTD was reached at 100mg
- 2 DLTs (Grade 3 myalgia and paresthesia) observed at 160mg and were transient, resolving rapidly after brief dose interruption
- AST/ALT elevations were asymptomatic, transient and reversible, with no Hy's Law criteria met
- Minimal dose modifications seen, with no discontinuations due to AEs

Figure 2. STX-478 induces minimal changes to fasting glucose at any dose level

Figure 3. PK data and relative PI3K pathway coverage

¹Based on mouse efficacious exposure 100mg/kg in 3 CDX models, ²Based on in vitro T47D (H1047R) cell pAKT assay, ³Matched unbound pAKT suppression in head-to-head benchmarked T47D in vitro assays

- Exposure is dose proportional and linear, with a $T_{1/2}$ of ~60 hours
- At doses \geq 40mg QD, STX-478 achieved target coverage significantly higher than other PI3K inhibitors at their RP2D

ludes	Dose Modification	e Modifications ⁷
curred	Interruptions	26%
ncludes	Reductions	13%
TEAEs	Discontinuations	0%

Figure 4. STX-478 efficacy and dose-response relationship

Best overall response N (%)	All Tumors (n=43) ²	HR+/HER2- breast (n=22) ²	
ORR ¹ (cPR + uPR)	9 (21)	5 (23)	
DCR (CR+PR+SD)	29 (67)	15 (68)	
cPR	4 (9)	3 (14)	
uPR*	5 (12)	2 (9)	
SD	20 (47)	10 (46)	
PD	14 (33)	7 (32)	

HR+/HER2- breast cancer

¹Includes unconfirmed (uPR) and confirmed (cPR) partial responses, ²Efficacy evaluable and measurable disease patients shown. *All 5 patients with uPRs have converted to cPRs after the data cut

- A monotherapy ORR of 23% compares favorably to other PI3K pathway inhibitors (ORR 4-6%)^{4,5}
- A dose-response relationship is observed with faster median time to response at higher doses

Figure 5. Waterfall plot in all tumors, including HR+ breast cancer

- Responses seen in both PIK3CA kinase and helical domain mutations and in patients receiving prior PI3K pathway inhibitors
- Multiple responding patients deepened their responses over time on therapy, with patient longest in PR on treatment > 12 months

Figure 6. Durable response in a patient with PI3K α^{H1047R} kinase domain mutant HR+/HER2- breast cancer intolerant to alpelisib

Best

PD

- 81 year-old female with metastatic PI3K α^{H1047R} mutant HR+/HER2- BC
- Pre-diabetic (HbA1c 6.7%)
- 3 prior lines of therapy
- Neoadjuvant letrozole
- Palbociclib + fulvestrant
- Alpelisib (discontinued due to hyperglycemia and diarrhea)
- Started STX-478 at 20mg, increased to 40mg with PR at C7, on therapy > 12 mo

Figure 7. PIK3CA mutant variant allele frequency and correlation with clinical response

Patients of all tumor types with available longitudinal ctDNA are included. *Left: patients 12 and 14 have two PIK3CA mutations, only one represented. ¹Neogenomics Invision 37 gene liquid biopsy test (including PIK3CA) utilized. VAF: variant allele frequency

- STX-478 is a potential best-in-class oral, allosteric mutantselective PI3K α inhibitor
- STX-478 is well-tolerated with limited PI3K wildtype toxicities in a high-risk patient population, including those with diabetes and/or intolerant to other PI3K α inhibitors
- STX-478 dosing achieves target coverage several fold higher than other PI3K α inhibitors
- Efficacy is observed in patients with either PIK3CA kinase or helical domain mutations, with multiple responses deepening over time
- Enrollment is ongoing, including STX-478 combinations with fulvestrant +/- CDK4/6 inhibitors in patients with HR+/HER2breast cancer

JCO 2018

personnel involved

Conclusions

• STX-478 is active in breast cancer, with a monotherapy ORR exceeding that of approved PI3K pathway inhibitors

References

1. Mayer and Arteaga. Annu Rev Med 2016; 2. Fruman et al. Cell 2017; 3. Buckbinder et al. Cancer Discov 2023; 4. Banerji et al. JCO 2018; 5. Juric et al.

Acknowledgements

- The authors thank the participants, families, investigators and study
- This work was supported and funded by Scorpion Therapeutics, Inc.
- Copies of this poster obtained through Quick Response (QR)
- Code are for personal use only and may not be reproduced
- without permission from SABCS[®] and the authors.
- For requests email mchao@scorpiontx.com

